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Theoretical and Experimental
Research: Diagnostic Analysis
of the Feed Kinematic Chain
Mechanical System

4.1 INTRODUCTION TO MECHANICAL
SYSTEMS ANALYSIS

The dynamic study of a mechanical system has as its goal the knowledge
and, sometimes, the prediction of the dynamic behavior, in order to
understand which way the modifications made to a system or to the
disturbing sources affect the dynamic behavior of this system. Physical
or mathematical models must be created in this respect, models that
can approximate as well as possible the behavior of the real system.

The creation of a system model usually supposes the use of an
adequate combination of theoretical and experimental methods whose
succession is determined by the goals of the research and the character-
istics of the system. Theoretical analysis of the system is carried out to
determine the dynamic properties of the system and is based on equa-
tions that characterize the system, also known as “model construction
equations.” The theoretical analysis implies certain steps that must be
followed:

1. Establishing some simplifying hypothesis for the system in
order to reduce the analysis effort
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2. Establishing the sum equations for the masses, the energies,
and/or the impulses that occur in the system

3. Establishing the phenomenological equations in the case of ir-
reversible processes (i.e., heat propagation)

Generally, a system of ordinary differential and/or partial deriva-
tive equations is obtained, and these equations represent the theoretical
model of the system of given structure and parameters. This model is fre-
quently very complex and can not be used as it is. Model simplification
is necessary and can be accomplished by

Linearization of partial derivative equations
Approximation by ordinary differential equations of the partial

derivative equations
Reduction of the order of ordinary differential equations

The resulting theoretical model contains the functional link between the
physical data of the system and its parameters. The theoretical model
is recommended only if sufficient elements are known (elements that are
connected to the laws that characterize the system’s dynamic behav-
ior), or if the theoretical model’s behavior must be simulated. It must
be stressed that theoretical analysis enables the researcher to establish
equations that describe the dynamics of the modeled system even when
the system is in the state of design, not available for experiments.

Experimental analysis of a system, a method also known as “identi-
fication of the system,” proposes to determine the mathematical model
on the basis of measurements of variables that characterize its evolu-
tion in a certain regime. In this situation, we always start from knowl-
edge about the system gathered through previous theoretical or other
analysis. Then, the input and output of the system are measured and
evaluated using an adequate method for identification, which is the
link between the measured variables. It should be noted that the in-
put magnitudes can be signaled by the normal function of the sys-
tem or can be artificially introduced signals. The experimental model
contains numerical values as parameters whose functional connection
with the physical data remains unknown. This model, which gener-
ally describes the momentary dynamic behavior of the system, is ob-
tained with minimal effort, and can be used to lead or predict certain
variables.

Theoretical analysis can use the results of the experimental anal-
ysis to verify the precision of the theoretical model or to determine
the parameters of the model that cannot be determined otherwise. The
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experimental analysis can use the results of the theoretical analysis es-
pecially for the model structure.

The models that result from the two types of analysis can be com-
pared. Reexecuting certain steps of the analysis can eliminate the even-
tual nonconcordances.

In conclusion, it is evident that the correct model of a system is
necessary to perform an adequate combination of theoretical and exper-
imental methods. One of the possible combinations of the two types of
analysis is presented in Figure 4.1. The analysis steps and their succes-
sion are influenced during the procedure.

4.2 THE EXPERIMENTAL STAND

The kinematic feed chain ensures the cyclical positioning on one of the
generating trajectories (G, D) of the generator element (DE or GE). The
classical structure of the kinematic feed chains is presented in Figure 4.2,
where the notations represent the following.

OP represents the start/stop of machine movement.
I is the reverse for the feed movement direction.
Ks is the mechanism of periodic transmission of the movement

(if the advance is intermittent).
MR is the mechanism of feed magnitude adjustment.
S is the safety mechanism (protection to overloads).
MT is the mechanism that transforms the rotation movement into

translation movement.

In the most recently proposed structures of the feed kinematic chains
some of the above-presented mechanisms have disappeared, their roles
being taken by the driving element which is usually a continuous current
motor with a large domain for rpm adjustment.

The problem of establishing the technical diagnostic in the kine-
matic feed chains of modern machine tools necessitated building an ade-
quate testing stand, one that contained all the necessary elements. Fig-
ure 4.3 presents the structural kinematic schema of the studied kinematic
feed chain.

The driving element is a direct current motor, type SMUC-35,
having the characteristics:

The actual moment, Mn = 35 Nm
The nominal intensity of current, In = 28 A
The couple with the ampere coefficient, KT = 13 Nm/A
The inertial moment, j = 0.065 kgm2
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FIGURE 4.1 Combination of theoretical and experimental analyses.
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FIGURE 4.2 Classical structure of a kinematic feed chain.

The leading screw (which has a step of 10 mm and a double nut
with balls (D = 60 mm, d = 30 mm, p = 10 mm, z = 103 bile, Dw =
6 mm, and kRb = 12 ∗ 104 daN/mm) to compensate the axial play) is
fitted in two identical bearing cases that contain a pair of axial bearings
51307-P5 and one pair of radial bearings 6207-P6.

The slide movement along the body’s guidings is ensured by the
cam followers with rolls type GRT 3 (Lw = 14 mm, Co = 10200 daN,
f = 1,25 µm at 1000 daN, kcr = 80 ∗ 103 daN/mm), mounted in “O”.

The material used for slide and body is cast iron (Fmn having
E = 1,6 ∗ 104 daN/mm, G = 4,5 ∗ 103 daN/mm, γ = 7,3 kg/dm3,
α = 18 ∗ 10−6 grd−1) and the leading screw is made from alloyed steel
(40Cr10 having: E = 2,1 ∗ 104 daN/mm, G = 8,1 ∗ 103 daN/mm, γ =
8,2 kg/dm3, α = 0,16 ∗ 10−6 grd−1).

The block schema from Figure 4.4 highlights the main component
elements of the mechanic stand.

FIGURE 4.3 Structural kinematic schema of the studied kinematic feed chain.
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FIGURE 4.4 Main constitutive elements of the mechanical stand.

4.3 THEORETICAL ANALYSIS OF THE
KINEMATIC FEED CHAIN
MECHANICAL SYSTEM

The numerical analysis method proposes to model the physical phenom-
ena in equations and describes the behavior of the physical systems by
equations that express laws of mass, impulse, and shape conservation.

Finite difference methods consist of replacing the differentials from
the equations of the model with very small finite differences, with the
restriction of the validity only in certain points of the analyzed domain
(the points of the discretized network of the model). Because of this
method the discretized network will have a rectangular shape, thus for
models with curved surfaces the method will be very difficult to apply.

Finite element methods (FEM) are based on local approximation,
and on portions or subdomains that also consider the reports of relative
dependence between the entire domain and the studied subdomain. The
behavior of such a cut-up finite element is formulated by the equation:

[k] ∗ {d} = {q} (4.1)

where [k] is the stiffness matrix of the finite element, {d} is the vector of
displacements from nodal points, and {q} is the vector of the generalized
forces that act on the elements by nodes.
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The boundary element method (BEM) supposes that displace-
ments produced by an elastic concentrate force applied at the origin
(node) are known. This method is based on the equality between the
mechanical work which results from the motion of a force system on the
movement coordinates of a second force system and the mechanical work
produced by the second system on the movements of the first. By using
the relations between forces and displacements the tensor components
that actually represent the problem’s solution can be determined.

Among these three methods, the finite element method is most pre-
ferred because of the following qualities: large domain of applications,
liberty to choose the type of discretization and to use simultaneously
many more types of finite elements, discretization with variable geom-
etry, and the possibility of performing calculus on substructures. The
finite element method represents the “brick” of the discretized physical
system, the shape, the type, and its equations being the discretization
principles result.

4.3.1 The Method and Images 3D Algorithm

The FEM operates with three types of finite elements that are justified
by geometry and number of independent coordinates:

Unidimensional elements (bar type), that have as ends even the
nodes of the discretization network.

Bidimensional elements (plate type). The IMAGES 3D program
includes two elements of this type: membrane (bending stressed
only) and plate, which also has the thickness of the plate de-
fined.

Tridimensional elements (prism, tetrahedral, and hexahedral type).

The increase in number of elements leads generally to the increase of
the precision degree. However, over a certain value, the error does not
decrease, no matter to what degree the number of the discretization
elements would increase.

Interpolation functions are used to write the relations concerning
the deformation and stress state of the finite element. The most used
interpolation function is the Hermite function. For each type of finite
element the rigidity matrix is determined (on the basis of the principle
of virtual mechanical work), in the local axis system. This rigidity ma-
trix is used to express finite element behavior by the known equation:
[k] ∗ {u} = {r}.
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The assembling operation of the rigidity matrices and of the nodal
force vectors determines the system of equations that characterize the
structure: [K] ∗ {U} = {R}, where the relation’s terms represent the
result of the aligning of the rigidity matrix and displacement and forces
from the local system to the global axis system.

In order to ensure the convergence of solutions to the most exact
solution, certain conditions must be followed.

The displacement models should be continuous inside the finite
element. This condition is accomplished by the use of Gauss
polynomial interpolation, which represents continuous functions.

The displacements of the finite element should be compatible with
the other ones. The displacement compatibility is satisfied only
if the displacements of the points from every edge depend only
on the displacements of the nodes that delimit the respective
edge.

The displacement models should consider the displacements of the
entire discretized system and also the constant stress state of
elements. This supposes avoidance of a very fine discretization
because when constructing the rigidity matrix, the elements of
the main diagonal will be of negligible value (zero), which leads
to a null determinant and thus to a wrong value of the inverse
of this matrix.

4.3.2 Discretization of the Physical Model

The theoretical working model was obtained applying the similitude
theory for the physical model presented. The reduction scale for the
length was chosen as λ = 2.5 and the other scales have resulted:

λl = λϕ = λδ = 2.5

λE = λG = λσ = λµ = 1 (4.2)

λF = λ2
l = 6.25

In other words: using the same material, the linear dimensions of the
system are multiplied by λ, the forces by λ2, and the elastic constants
are multiplied by λ for translation and by λ3 for rotation, then the am-
plitudes and the frequencies are multiplied by λ, and the efforts remain
unchanged.

The following discretization of structure was obtained (Fig. 4.5)
based on the principles presented in the previous paragraph. The body
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FIGURE 4.5 Structure discretization.

was made with a network of 613 points, the base finite element being
the plate (membrane plates bending) under loads of compression and/or
bending. The discretization is finer in the bearing zone to better estimate
the maximum stress points of the structure.

The body guidings are also plate elements type, but they do not
have a median longitudinal point that represents the contact point with
the roll cam follower. This point has been connected to the extreme
points of the finite element by springs with an increased rigidity com-
pared to the other elements (k = 107 daN/mm). In this manner, the
guiding-rollers contact is better approximated. Finally, for the longitu-
dinal body and its guidings, 463 plates with a thickness between 20 and
40 mm have resulted.

The longitudinal slide (the table) was discretized using a step of
15 mm and 120 elements of plate type have resulted. The table’s rolling
guidings had been “replaced” by spring type elements having the same
rigidity as the elements that define the link between the body and the
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guiding plates. The leading screw was discretized in only 23 points be-
cause of its homogeneity and its physicomechanical characteristics which
are constant in all directions; a bar network that can be loaded to tensile
and compression stresses results.

A tubular shaped nut was made using tridimensional finite ele-
ments (solids), which were connected to the table slide by means of
plates made from the same material.

A special problem was the connection between the body and ground,
which was made by springs connected to the ground, having in count
the damping and elastic characteristics of the base material.

4.3.3 Statistical Analysis of Physical Model

Static loads were applied in order to determine the deformation mode
of the mechanical system, a system designed as an assembly of elements
that introduce deformations in a certain proportion for each element,
and also to determine the zones of the structure having maximum defor-
mations. In order to find the deformation mode, the load of the model’s
slide during the cutting process was simulated. The load was made with
a static force that cumulated the weight of the semiproduct and the
maximum value of the cutting force. The force was applied punctually
on the slide decomposed on the following three directions: 1000 daN on
OX; 2000 daN on OY; and 3000 daN on OZ. The total deformations of
the constitutive elements were supervised on the above-mentioned three
directions.

Studying the displacements on the OX axis, it has been observed
that the most considerable yield (∆xmax = 1.14 µm) is produced in the
screw-nut mechanism, as expected. Figure 4.6 presents a cut-through
model to visualize the deformations to this mechanism. Less impor-
tant deformations have resulted on the OY direction until ∆ymax =
−0.447 µm value (compression) in the guidings zone.

Hook’s law can be applied to the entire model because the loading
does not surpass the elastic domain. This law introduces the propor-
tionality relation between the unitary efforts and the deformations. As
a result, the tensor of unitary efforts may be calculated and represented
using the same algorithm.

As previously mentioned, the deformation state was maximum at
the screw-nut mechanism, so the nut stresses have been detailed as the el-
ement with the most important yield. Considering the global stress state
it can be noticed that a maximum value σmax = 4.51 10−2 daN/mm2 is
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FIGURE 4.6 Section-through model.

reached. The analysis continued by decomposing the tensor on the main
directions (σ11, σ22, σ33 components). σ11, σ22 have close values, but σ33
surpasses them by 150%, being by far most important (the maximum
tensile strength: σ33,max = 3.86 10−2 daN/mm2).

Figure 4.7 presents the global stress state of the physical model.
It is evident that the maximum stresses are in the zone of the move-
ment transform mechanism and the guidings zone; the body appears
nonstressed but the table slide is stressed in the rolling guidings zone
and at corners.

4.3.4 Modal Analysis of Physical Model

The method of modal analysis follows to determine certain dynamic
characteristics by the estimation of the weights matrix, rigidity matrix,
and damping matrix. As a result of this analysis the natural pulsations
of the structure, the existent damping in the system, and the type of
natural vibration modes can be deduced. The first three natural vibra-
tion modes and their corresponding natural frequencies were highlighted
for the analyzed physical model using the IMAGES 3D program.

The first natural vibration mode (Fig. 4.8) affects the mechanism
of movement transformation type screw-nut with balls and corresponds
to a natural frequency of 259.6 Hz. High deformation of the free end
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FIGURE 4.7 Global stress state of physical model.

of the nut is observed during the other subassemblages of the model
(longitudinal slide, bearings, and body) to remain practically immobile.

The second natural vibration mode appears at 380 Hz frequency
(Fig. 4.9), where a sensible deformation of the screw-nut mechanism is
recorded, a slightly longitudinal and transversal deformation of guidings
occurs, and a little transversal deformation of the body also occurs.

The third natural vibration mode (Fig. 4.10) occurs at 491 Hz
and leaves the screw-nut mechanism almost undeformed. However, a
powerful deformation of the guidings in a vertical direction and a slight
deformation of the table slide are recorded.

The following conclusions can be formulated as a result of theoret-
ical analysis of the mechanical system of the kinematic feed chain.

The most important yield from the kinematic feed chain belongs
to the movement transforming mechanism.

The nut represents the most stressed element from the point of
view of tension intensity.

The bearings rigidity influences the static and modal behavior of
the leading screw.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Feed Kinematic Chain Mechanical System 111

FIGURE 4.8 First natural vibration mode.

FIGURE 4.9 Second natural vibration mode.
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FIGURE 4.10 Third natural vibration mode.

The displacements of the slide–guidings–transforming mechanism
ensemble are of major importance on transversal direction and
less important on longitudinal direction.

The theoretical model constructed approximates with very good
results the real model of the feed kinematic chain of a milling
and reaming machine AF 180.

The FEM is susceptible to any factors that contribute to improve-
ment of static and modal behavior of the analyzed structure.

The analysis led to the identification of the elements with maxi-
mum stresses in the structure, in order to monitor them during
operation.

4.4 EXPERIMENTAL ANALYSIS OF
KINEMATIC FEED CHAIN
MECHANICAL SYSTEM

The vibration of a mechanical system is caused by external loadings or
imposed movements that are variable in time, and are generally called
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excitations or perturbations. Movements of different points of the sys-
tem and the dynamical efforts from its elements are manifestations of
the mechanical nature of these perturbations, and are called responses.
The response is conditioned both by the excitation parameters and the
mechanical characteristics of the system. Solving the vibration prob-
lems consists of establishing relations among excitation, response, and
mechanical characteristics of the system.

The experimental analysis (identification) of the mechanical sys-
tem proposes a series of functions of excitation and corresponding func-
tions of response, to facilitate a mathematical description or an analyti-
cal model of the system. The relations between excitation and response
are experimentally determined; the most frequently used data are the
response curves in the frequency of the system obtained by excitation
with test signals. On the basis of these curves, the identification of nat-
ural frequencies and vibration modes is made, and also of the specific
dynamic properties. It is important that during experimentation the in-
fluence of other disturbing sources is reduced to a minimum. In addition
the equipment used for structure excitation and response measurement
should not modify the utilized mechanical system parameters.

The properties determined under these conditions sometimes differ
from those obtained during normal functioning, especially in nonlinear
structure cases. Choosing correct types and levels of excitation leads to
satisfying results. The dynamic characteristics of a linear system with a
single input x(t) and a single output y(t), can be described in the time
domain by the proportion function h(t), and in the frequency domain
by the response in frequency function H(iω) that constitute a pair of
Fourier transforms:

H(iω) =
∫ ∞

−∞
h(t)e−iωt dt (4.3)

In the case of determinist excitation, the response is given by the integral
of convolution:

y(t) =
∫ t

0
h(t′) x(t − t′)d′t = x(t) ∗ h(t) (4.4)

In this case the proportion function h(t) represents the response to an
excitation such as unity impulse (Dirac) x(t) = δ(t). The following rela-
tion gives the function response in frequency:

H(iω) = Y (iω)/X(iω) (4.5)
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where X and Y are the Fourier transforms of excitation and response,
which can be written as

X(iω) =
∫ ∞

−∞
x(t)e−iωt dt

Y (iω) =
∫ ∞

−∞
y(t)e−iωt dt

(4.6)

the inferior limit being zero or the real systems.
If the structure excitation has been made with a force of the har-

monic type, the x(t) and y(t) functions will have the expression:

x(t) = xveiωt, y(t) = yvei(ωt+ϕ) (4.7)

which makes the response in the frequency function become

H(iω) =
yv

xv
eiϕ (4.8)

From the above relation a very important conclusion results: the module
of response in the frequency function (|H(iω)|) can be obtained from the
amplitude–pulsation characteristic (yv/xv − ω); and ϕ is obtained from
the phase-pulsation characteristic (ϕ − ω).

These diagrams can be determined experimentally using the si-
nusoidal excitation of constant amplitude and variable frequency. The
two characteristics can be drawn either dot by dot, making measure-
ments at discrete frequencies in the stationary regime, or continuum,
using a frequency scavenging slow enough to permit the establishment
of the regime response for each frequency. Using a live frequency ana-
lyzer simplifies the gathering of responses, a single excitation signal being
sufficient. The structure of frequency analyzers includes an analyzer for
functions compartment at whose entrance the signals x(t) = xv sinωt,
y(t) = yv sin(ωt+ϕ) are applied and a reference signal z(t) = zv cos(ωt).
This compartment performs the following multiplication,

x(t)y(t)
2
x2

v

=
yv

xv
cos ϕ − yv

xv
cos(2ωt + ϕ)

z(t)y(t)
2

xvzv
=

yv

xv
sinϕ +

yv

xv
sin(2ωt + ϕ)

(4.9)

where the constant terms represent the real and imaginary parts of the
response in frequency function. Elimination of variable terms is made
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with down-pass filters, making the mean of the products on an integer
number of cycles of excitation.

Processing the signals that correspond to the two components,
the analyzer displays the polar (Nyquist) diagram of the response in
frequency for the mechanical system (Fig. 4.11). Graphical analysis of
these diagrams, as proposed by Kennedy and Pancu [82], remains the
most exact method for determination of the dynamic parameters and of
the type of natural vibration modes of a complex structure. To do this
analysis, each buckle of the diagram is approximated with a circle and
calculus relations established for systems with a single degree of freedom
are used. Usually the work is done with the hypothesis of a proportional
damping and, it is considered that, in the vicinity of no matter what
natural frequency, the contribution of the nonresonator modes is either
negligible, or constant (independent of the excitatory pulsation).

Localization of the natural pulsation is made, in this case, using the
criterion of extreme value of the imaginary component of the diagram.
Thus, the M point is found (the extreme point on the imaginary axis),
and, corresponding to it, the ωr frequency.

To determine the damping, the BC diameter is drawn perpen-
dicular on O′M ; this diameter intersects the approximation circle in

FIGURE 4.11 Polar (Nyquist) diagram.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



116 Chapter 4

FIGURE 4.12 Experimental installation.

semipower points B and C, at ωr′ and ωr′′ pulsations. The approxima-
tion factor is calculated with the equations:

gr =
ω2

r′′ = ω2
r′

2ω2
r

=
ω2

r′′ − ω2
r′

ω2
r′′ + ω2

r′
(4.10)

The modal masses are calculated with the equation:

mr =
1

ω2
rgrO′M

(4.11)

The experimental analysis of the physical model of the kinematic feed
chain followed the stages highlighted previously. The experimental in-
stallation used (Fig. 4.12) contained the impact hammer B & K 8202
and the real-time frequency analyzer B & K 2034. The model excita-
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tion was made striking the longitudinal table in the vertical direction,
and the structure response was captured from the body by a B & K
4391 accelerometer. The selected frequency domain was between 0 and
800 Hz, linear, considering the results of the theoretical analysis. Fig-
ure 4.13 presents graphics of the magnitude and phase of the response
in frequency; it must be noticed that the maximum values are located
at 265, 374, and 474 Hz in the magnitude/frequency graphic.

FIGURE 4.13 Graphics of magnitude and phase of the frequency response.
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FIGURE 4.14 Processed signal to obtain the real and imaginary components
of the frequency response.
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At the next stage, the signal was processed in order to obtain the
real and imaginary components of the frequency response (Fig. 4.14).
Nyquist diagram was then drawn using these components (Fig. 4.15).
The results indicate a stable structure from the dynamical point of view,
as expected from the theoretical analysis made by the finite element
method. The differences between the calculated natural pulsations using
the FEM and those experimentally obtained are minimal, as Table 4.1
shows.

The experimental validation of the natural frequencies and the
implicit natural vibration modes estimated by the finite element method

FIGURE 4.15 Nyquist diagram drawn using real and imaginary components
of the frequency response.
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TABLE 4.1 Differences Between Calculated Natural Pulsations Using
FEA and Those Experimentally Obtained

Calculated natural frequency, fc [Hz] 259.6 380 491

Measured natural frequency, fm [Hz] 265 374 474

Deviation ε =
∣
∣
∣
∣

fm − fc

fm
∗ 100

∣
∣
∣
∣

[%] 2.04 1.60 3.59

lead to the conclusion that the analysis methods implied by this research
have been correctly applied, and the results obtained are significant.

4.5 CONCLUSIONS AND IMPLICATIONS
OF DIAGNOSTIC ANALYSIS IN
FUTURE RESEARCH

Theoretical and experimental analysis of the physical model of the kine-
matic feed chain have yielded the possibilities of identifying the points of
maximum stress in the structure of the kinematic chain, and identifying
the natural frequencies of the structure. In addition, reliable stability of
the physical model has been confirmed, which makes this an apt model
for the study of problems related to the technical diagnosis of elements
from its structure.

By analyzing the deformations of the physical model the following
highlighted that the most important yield occurs where the zone of the
mechanism is predisposed to failures, namely, the transforming mecha-
nism screw-nut with balls and the rolling guidings of the longitudinal
slide. These yields can influence the functioning of the mechanism and
speed up the occurrence of the damaging processes that contribute to
the mechanism’s failure. The deformation values are closer to those of
the preadjusted mechanical plays in these mechanisms that can lead to
a fault functioning.

Knowing the natural frequencies of the structure enables us to
compare them with the characteristic frequencies (of operation) of all
the mechanisms in the studied kinematic chain’s structure. From the
technical literature and also from the theoretical and experimental re-
search for the determination of the characteristic frequencies of some
mechanisms with bearings, ball screws, and roller cam followers, it has
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been noticed that these work frequencies are in a neighboring domain
with that of the investigated natural frequencies, but usually inferior.

Theoretically there is a possibility of resonance occurrence with
the natural frequencies because of the important increase in the power
spectrum (e.g., for an element with mechanical fault) that occurs not
only at the characteristic frequencies, but also superior harmonics of
these frequencies. This phenomenon leads to signals of false mechanical
faults and unreasonable stoppages of machines, and happens especially
in online diagnosis systems having low resolution.

The results of this diagnostic analysis have oriented, from these
points of view, future theoretical and applicative research concerning
technical diagnostics for some elements of the general structure of kine-
matic feed chains.
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